.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "generated_examples/plot_neighbor_distances.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_generated_examples_plot_neighbor_distances.py: Plot Neighbor Distances ======================== This example shows ho to plot the distances of nearby elements to a specific element (d<10) .. GENERATED FROM PYTHON SOURCE LINES 6-14 .. code-block:: default # pylint: disable=pointless-statement from pathlib import Path import numpy as np import pandas as pd from mesh2vec.mesh2vec_cae import Mesh2VecCae .. GENERATED FROM PYTHON SOURCE LINES 15-17 Load Shell from ANSA ---------------------- .. GENERATED FROM PYTHON SOURCE LINES 17-24 .. code-block:: default hg = Mesh2VecCae.from_ansa_shell( 10, Path("../../data/hat/Hatprofile.k"), json_mesh_file=Path("../../data/hat/cached_hat_key.json"), ) df = hg.to_dataframe() .. GENERATED FROM PYTHON SOURCE LINES 25-27 Find neighbors for specific node and store their distance ---------------------------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 27-35 .. code-block:: default TEST_EID = "1001546" distances = range(0, 10) test_neighborhood = [hg.get_nbh(TEST_EID, i) for i in distances] in_dist_range = np.array( [[d if vtx in test_neighborhood[d] else 0 for vtx in hg.vtx_ids()] for d in distances] ) in_dist_range.shape .. rst-class:: sphx-glr-script-out .. code-block:: none (10, 6400) .. GENERATED FROM PYTHON SOURCE LINES 36-38 Check number of neighbors -------------------------- .. GENERATED FROM PYTHON SOURCE LINES 38-40 .. code-block:: default np.sum(in_dist_range > 0, axis=1) .. rst-class:: sphx-glr-script-out .. code-block:: none array([ 0, 8, 16, 24, 32, 40, 48, 56, 64, 53]) .. GENERATED FROM PYTHON SOURCE LINES 41-43 plot distance for neighbors ---------------------------- .. GENERATED FROM PYTHON SOURCE LINES 43-51 .. code-block:: default hg.add_features_from_dataframe( pd.DataFrame({"vtx_id": hg.vtx_ids(), "f1": np.sum(in_dist_range, axis=0)}) ) name = hg.aggregate("f1", 0, np.mean) fig = hg.get_visualization_plotly(str(name)) fig.update_layout(title=name) fig .. raw:: html


.. GENERATED FROM PYTHON SOURCE LINES 52-54 Access the results ------------------- .. GENERATED FROM PYTHON SOURCE LINES 54-55 .. code-block:: default hg.to_dataframe() .. raw:: html
vtx_id f1-mean-0
0 4700000 0
1 4700001 0
2 4700002 0
3 4700003 0
4 4700004 0
... ... ...
6395 2002173 0
6396 2002174 0
6397 2002175 0
6398 2002176 0
6399 2002177 0

6400 rows × 2 columns



.. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 1.318 seconds) .. _sphx_glr_download_generated_examples_plot_neighbor_distances.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_neighbor_distances.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_neighbor_distances.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_